import { Color, FrontSide, LinearFilter, MathUtils, Matrix4, Mesh, PerspectiveCamera, Plane, RGBFormat, ShaderMaterial, UniformsLib, UniformsUtils, Vector3, Vector4, WebGLRenderTarget } from '../../../build/three.module.js'; /** * Work based on : * http://slayvin.net : Flat mirror for three.js * http://www.adelphi.edu/~stemkoski : An implementation of water shader based on the flat mirror * http://29a.ch/ && http://29a.ch/slides/2012/webglwater/ : Water shader explanations in WebGL */ class Water extends Mesh { constructor(geometry, options = {}) { super(geometry); const scope = this; const textureWidth = options.textureWidth !== undefined ? options.textureWidth : 512; const textureHeight = options.textureHeight !== undefined ? options.textureHeight : 512; const clipBias = options.clipBias !== undefined ? options.clipBias : 0.0; const alpha = options.alpha !== undefined ? options.alpha : 1.0; const time = options.time !== undefined ? options.time : 0.0; const normalSampler = options.waterNormals !== undefined ? options.waterNormals : null; const sunDirection = options.sunDirection !== undefined ? options.sunDirection : new Vector3(0.70707, 0.70707, 0.0); const sunColor = new Color(options.sunColor !== undefined ? options.sunColor : 0xffffff); const waterColor = new Color(options.waterColor !== undefined ? options.waterColor : 0x7F7F7F); const eye = options.eye !== undefined ? options.eye : new Vector3(0, 0, 0); const distortionScale = options.distortionScale !== undefined ? options.distortionScale : 20.0; const side = options.side !== undefined ? options.side : FrontSide; const fog = options.fog !== undefined ? options.fog : false; // const mirrorPlane = new Plane(); const normal = new Vector3(); const mirrorWorldPosition = new Vector3(); const cameraWorldPosition = new Vector3(); const rotationMatrix = new Matrix4(); const lookAtPosition = new Vector3(0, 0, - 1); const clipPlane = new Vector4(); const view = new Vector3(); const target = new Vector3(); const q = new Vector4(); const textureMatrix = new Matrix4(); const mirrorCamera = new PerspectiveCamera(); const parameters = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBFormat }; const renderTarget = new WebGLRenderTarget(textureWidth, textureHeight, parameters); if (!MathUtils.isPowerOfTwo(textureWidth) || !MathUtils.isPowerOfTwo(textureHeight)) { renderTarget.texture.generateMipmaps = false; } const mirrorShader = { uniforms: UniformsUtils.merge([ UniformsLib['fog'], UniformsLib['lights'], { 'normalSampler': { value: null }, 'mirrorSampler': { value: null }, 'alpha': { value: 1.0 }, 'time': { value: 0.0 }, 'size': { value: 1.0 }, 'distortionScale': { value: 20.0 }, 'textureMatrix': { value: new Matrix4() }, 'sunColor': { value: new Color(0x7F7F7F) }, 'sunDirection': { value: new Vector3(0.70707, 0.70707, 0) }, 'eye': { value: new Vector3() }, 'waterColor': { value: new Color(0x555555) } } ]), vertexShader: /* glsl */` uniform mat4 textureMatrix; uniform float time; varying vec4 mirrorCoord; varying vec4 worldPosition; #include #include #include #include void main() { mirrorCoord = modelMatrix * vec4( position, 1.0 ); worldPosition = mirrorCoord.xyzw; mirrorCoord = textureMatrix * mirrorCoord; vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 ); gl_Position = projectionMatrix * mvPosition; #include #include #include #include #include }`, fragmentShader: /* glsl */` uniform sampler2D mirrorSampler; uniform float alpha; uniform float time; uniform float size; uniform float distortionScale; uniform sampler2D normalSampler; uniform vec3 sunColor; uniform vec3 sunDirection; uniform vec3 eye; uniform vec3 waterColor; varying vec4 mirrorCoord; varying vec4 worldPosition; vec4 getNoise( vec2 uv ) { vec2 uv0 = ( uv / 103.0 ) + vec2(time / 17.0, time / 29.0); vec2 uv1 = uv / 107.0-vec2( time / -19.0, time / 31.0 ); vec2 uv2 = uv / vec2( 8907.0, 9803.0 ) + vec2( time / 101.0, time / 97.0 ); vec2 uv3 = uv / vec2( 1091.0, 1027.0 ) - vec2( time / 109.0, time / -113.0 ); vec4 noise = texture2D( normalSampler, uv0 ) + texture2D( normalSampler, uv1 ) + texture2D( normalSampler, uv2 ) + texture2D( normalSampler, uv3 ); return noise * 0.5 - 1.0; } void sunLight( const vec3 surfaceNormal, const vec3 eyeDirection, float shiny, float spec, float diffuse, inout vec3 diffuseColor, inout vec3 specularColor ) { vec3 reflection = normalize( reflect( -sunDirection, surfaceNormal ) ); float direction = max( 0.0, dot( eyeDirection, reflection ) ); specularColor += pow( direction, shiny ) * sunColor * spec; diffuseColor += max( dot( sunDirection, surfaceNormal ), 0.0 ) * sunColor * diffuse; } #include #include #include #include #include #include #include #include void main() { #include vec4 noise = getNoise( worldPosition.xz * size ); vec3 surfaceNormal = normalize( noise.xzy * vec3( 1.5, 1.0, 1.5 ) ); vec3 diffuseLight = vec3(0.0); vec3 specularLight = vec3(0.0); vec3 worldToEye = eye-worldPosition.xyz; vec3 eyeDirection = normalize( worldToEye ); sunLight( surfaceNormal, eyeDirection, 100.0, 2.0, 0.5, diffuseLight, specularLight ); float distance = length(worldToEye); vec2 distortion = surfaceNormal.xz * ( 0.001 + 1.0 / distance ) * distortionScale; vec3 reflectionSample = vec3( texture2D( mirrorSampler, mirrorCoord.xy / mirrorCoord.w + distortion ) ); float theta = max( dot( eyeDirection, surfaceNormal ), 0.0 ); float rf0 = 0.3; float reflectance = rf0 + ( 1.0 - rf0 ) * pow( ( 1.0 - theta ), 5.0 ); vec3 scatter = max( 0.0, dot( surfaceNormal, eyeDirection ) ) * waterColor; vec3 albedo = mix( ( sunColor * diffuseLight * 0.3 + scatter ) * getShadowMask(), ( vec3( 0.1 ) + reflectionSample * 0.9 + reflectionSample * specularLight ), reflectance); vec3 outgoingLight = albedo; gl_FragColor = vec4( outgoingLight, alpha ); #include #include }` }; const material = new ShaderMaterial({ fragmentShader: mirrorShader.fragmentShader, vertexShader: mirrorShader.vertexShader, uniforms: UniformsUtils.clone(mirrorShader.uniforms), lights: true, side: side, fog: fog }); material.uniforms['mirrorSampler'].value = renderTarget.texture; material.uniforms['textureMatrix'].value = textureMatrix; material.uniforms['alpha'].value = alpha; material.uniforms['time'].value = time; material.uniforms['normalSampler'].value = normalSampler; material.uniforms['sunColor'].value = sunColor; material.uniforms['waterColor'].value = waterColor; material.uniforms['sunDirection'].value = sunDirection; material.uniforms['distortionScale'].value = distortionScale; material.uniforms['eye'].value = eye; scope.material = material; scope.onBeforeRender = function (renderer, scene, camera) { mirrorWorldPosition.setFromMatrixPosition(scope.matrixWorld); cameraWorldPosition.setFromMatrixPosition(camera.matrixWorld); rotationMatrix.extractRotation(scope.matrixWorld); normal.set(0, 0, 1); normal.applyMatrix4(rotationMatrix); view.subVectors(mirrorWorldPosition, cameraWorldPosition); // Avoid rendering when mirror is facing away if (view.dot(normal) > 0) return; view.reflect(normal).negate(); view.add(mirrorWorldPosition); rotationMatrix.extractRotation(camera.matrixWorld); lookAtPosition.set(0, 0, - 1); lookAtPosition.applyMatrix4(rotationMatrix); lookAtPosition.add(cameraWorldPosition); target.subVectors(mirrorWorldPosition, lookAtPosition); target.reflect(normal).negate(); target.add(mirrorWorldPosition); mirrorCamera.position.copy(view); mirrorCamera.up.set(0, 1, 0); mirrorCamera.up.applyMatrix4(rotationMatrix); mirrorCamera.up.reflect(normal); mirrorCamera.lookAt(target); mirrorCamera.far = camera.far; // Used in WebGLBackground mirrorCamera.updateMatrixWorld(); mirrorCamera.projectionMatrix.copy(camera.projectionMatrix); // Update the texture matrix textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); textureMatrix.multiply(mirrorCamera.projectionMatrix); textureMatrix.multiply(mirrorCamera.matrixWorldInverse); // Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html // Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf mirrorPlane.setFromNormalAndCoplanarPoint(normal, mirrorWorldPosition); mirrorPlane.applyMatrix4(mirrorCamera.matrixWorldInverse); clipPlane.set(mirrorPlane.normal.x, mirrorPlane.normal.y, mirrorPlane.normal.z, mirrorPlane.constant); const projectionMatrix = mirrorCamera.projectionMatrix; q.x = (Math.sign(clipPlane.x) + projectionMatrix.elements[8]) / projectionMatrix.elements[0]; q.y = (Math.sign(clipPlane.y) + projectionMatrix.elements[9]) / projectionMatrix.elements[5]; q.z = - 1.0; q.w = (1.0 + projectionMatrix.elements[10]) / projectionMatrix.elements[14]; // Calculate the scaled plane vector clipPlane.multiplyScalar(2.0 / clipPlane.dot(q)); // Replacing the third row of the projection matrix projectionMatrix.elements[2] = clipPlane.x; projectionMatrix.elements[6] = clipPlane.y; projectionMatrix.elements[10] = clipPlane.z + 1.0 - clipBias; projectionMatrix.elements[14] = clipPlane.w; eye.setFromMatrixPosition(camera.matrixWorld); // Render const currentRenderTarget = renderer.getRenderTarget(); const currentXrEnabled = renderer.xr.enabled; const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate; scope.visible = false; renderer.xr.enabled = false; // Avoid camera modification and recursion renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows renderer.setRenderTarget(renderTarget); renderer.state.buffers.depth.setMask(true); // make sure the depth buffer is writable so it can be properly cleared, see #18897 if (renderer.autoClear === false) renderer.clear(); renderer.render(scene, mirrorCamera); scope.visible = true; renderer.xr.enabled = currentXrEnabled; renderer.shadowMap.autoUpdate = currentShadowAutoUpdate; renderer.setRenderTarget(currentRenderTarget); // Restore viewport const viewport = camera.viewport; if (viewport !== undefined) { renderer.state.viewport(viewport); } }; } } Water.prototype.isWater = true; export { Water };